Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Poult Sci ; 102(12): 103123, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832192

RESUMO

The slow-growing Korat chicken (KR) has been developed to provide an alternative breed for smallholder farmers in Thailand. Carnosine enrichment in the meat can distinguish KR from other chicken breeds. Therefore, our aim was to investigate the effect of enriched carnosine synthesis, obtained by the ß-alanine and L-histidine precursor supplementation in the diet, on changes to metabolomic profiles and biochemical compounds in slow-growing KR jejunum tissue. Four hundred 21-day-old female KR chickens were divided into 4 experimental groups: a group with a basal diet, a group with a basal diet supplemented with 1.0% ß-alanine, 0.5% L-histidine, and a mix of 1.0% ß-alanine and 0.5% L-histidine. The feeding trial lasted 70 d. Ten randomly selected chickens from each group were slaughtered. Metabolic profiles were analyzed using proton nuclear magnetic resonance spectroscopy. In total, 28 metabolites were identified. Significant changes in the concentrations of these metabolites were detected between the groups. Partial least squares discriminant analysis was used to distinguish the metabolites between the experimental groups. Based on the discovered metabolites, 34 potential metabolic pathways showed differentiation between groups, and 8 pathways (with impact values higher than 0.05, P < 0.05, and FDR < 0.05) were affected by metabolite content. In addition, biochemical changes were monitored using synchrotron radiation-based Fourier transform infrared microspectroscopy. Supplementation of ß-alanine alone in the diet increased the ß-sheets and decreased the α-helix content in the amide I region, and supplementation of L-histidine alone in the diet also increased the ß-sheets. Furthermore, the relationship between metabolite contents and biochemical compounds were confirmed using principal component analysis (PCA). Results from the PCA indicated that ß-alanine and L-histidine precursor group was highly positively correlated with amide I, amide II, creatine, tyrosine, valine, isoleucine, and aspartate. These findings can help to understand the relationships and patterns between the spectral and metabolic processes related to carnosine synthesis.


Assuntos
Carnosina , Animais , Feminino , Carnosina/análise , Galinhas/metabolismo , Histidina/metabolismo , Jejuno/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , beta-Alanina/metabolismo , Amidas/análise , Amidas/metabolismo , Amidas/farmacologia , Músculo Esquelético/química
2.
Poult Sci ; 101(5): 101776, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35303689

RESUMO

Carnosine enrichment of slow-growing Korat chicken (KRC) meat helps differentiate KRC from mainstream chicken. We aimed to investigate the effects of ß-alanine and L-histidine supplementation on the carnosine synthesis in and quality and secondary structure of proteins in slow-growing KRC meat. Four hundred 21-day-old female KRC were used, and a completely randomized design was applied. The chickens were divided into 4 experimental groups: basal diet (A), basal diet supplemented with 1.0% ß-alanine (B), 0.5% L-histidine (C), and 1.0% ß-alanine combined with 0.5% L-histidine (D). Each group consisted of 5 replicates (20 chickens per replicate). On d 70, 2 chickens per replicate were slaughtered, and the levels of carnosine, anserine, and thiobarbituric acid reactive substances were analyzed. Biochemical changes were monitored using synchrotron radiation-based Fourier transform infrared microspectroscopy; 5 chickens per replicate were slaughtered, and the meat quality was analyzed. Statistical analysis was performed using ANOVA and principal component analysis (PCA). Group D chickens exhibited the highest carnosine meat content, followed by those in groups B and C. However, amino acid supplementation did not affect anserine content and growth performance. Higher carnosine levels correlated with increasing pH45 min and decreasing drip loss, cooking loss, shear force, and lipid oxidation. PCA revealed that supplementation with only ß-alanine or L-histidine was related to increased content of ß-sheets, ß-turns, and aliphatic bending groups and decreased content of α-helix groups. This study is the first to report such findings in slow-growing chicken. Our findings suggest that KRC can synthesize the highest carnosine levels after both ß-alanine and L-histidine supplementation. Higher carnosine contents do not adversely affect meat quality, improve meat texture, and alter the secondary structures of proteins. The molecular mechanism underlying carnosine synthesis in chickens needs further study to better understand and reveal markers that facilitate the development of nutrient selection programs.


Assuntos
Carnosina , Animais , Anserina/análise , Carnosina/análise , Galinhas , Suplementos Nutricionais , Feminino , Histidina/metabolismo , Carne/análise , Músculo Esquelético/química , beta-Alanina/metabolismo
3.
Animals (Basel) ; 11(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34573562

RESUMO

Korat chicken (KRC) is a slow-growing chicken bred in Thailand, whose meat exhibits a unique toughness. A previous study produced KRC breast meat containing high carnosine content through dietary supplementation with ß-alanine or L-histidine; however, the KRC that were fed an L-histidine-supplemented diet produced meat that was significantly more tender. Herein, we performed RNA-Seq to identify candidate genes involved in the regulation of carnosine content and meat toughness. Total RNA was isolated from five female KRC breast muscles in each treatment group that KRC fed diets without supplementation, supplemented with ß-alanine or L-histidine. Compared to the non-supplemented group, we identified 118 and 198 differentially expressed genes (DEGs) in the ß-alanine or L-histidine supplementation groups, respectively. Genes potentially related to meat tenderness-i.e., those regulating myosin, collagen, intramuscular fat, and calpain-were upregulated (LOC107051274, ACSBG1, and CAPNS2) and downregulated (MYO7B, MYBPH, SERPINH1, and PGAM1). However, carnosine synthase gene was not identified. Functional enrichment analysis identified pathways affected by dietary supplementation, including the insulin signaling pathway (ß-alanine supplementation) and the insulin resistance and adipocytokine signaling pathways (L-histidine supplementation). The FoxO signaling pathway was identified as a regulatory network for both supplementation groups. The identified genes can be used as molecular markers of meat tenderness in slow-growing chickens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...